CHEMISTRY OF OZONE FORMATION IN THE ATMOSPHERE 1. Basic Photochemical Cycle of NO₂, NO, and O₃ $$NO_2 + hv \longrightarrow NO + O$$ (1) $$O + O_2 + M \longrightarrow O_3 + M$$ (2) $$O_3 + NO \longrightarrow NO_2 + O_2$$ (3) These reactions occur relatively rapidly so that a steady state is reached, in which the ozone concentration is $$\left[O_3\right] = \frac{j_{\text{NO}_2}[\text{NO}_2]}{k_3[\text{NO}]}$$ ## 2. Atmospheric Chemistry of Carbon Monoxide $$CO + OH \xrightarrow{O_2} CO_2 + HO_2$$ (1) $$HO_2 + NO \longrightarrow NO_2 + OH$$ (2) $$HO_2 + HO_2 \longrightarrow H_2O_2 + O_2$$ (3) $$OH + NO_2 + M \longrightarrow HNO_3 + M \tag{4}$$ $$P_{O_3} = k_{HO_2+NO} [HO_2][NO]$$ ## 3. Dependence of O₃ Formation on NO_x Low NO_x Limit Principal sink of HO_x is $HO_2 + HO_2$ $$P_{O_3} \sim [NO] \iff As NO_x \uparrow, P_{O_3} \uparrow$$ High NO_x Limit Principal sink of HO_x is OH + NO₂ $$P_{O_3} \sim [CO]/[NO_2] \iff As NO_x \uparrow, P_{O_3} \downarrow$$ 4. Ozone Production Efficiency $$OPE = \frac{P_{O_3}}{L_{NO_x}}$$ Typical ozone isopleths used in EPA's EKMA. The NO_x^- limited region is typical of locations downwind of urban and suburban areas, whereas the VOC-limited region is typical of highly polluted urban areas. Source: Adapted from Dodge, 1977. Isopleths giving net rate of ozone production (ppb/h, solid lines) as a function of VOC (ppbC) and NOx, (ppb) for mean summer daytime meteorology and clear skies. The solid lines represent production rates of 1, 2.5, 5, 10, 15, 20 and 30 ppb/h. The dashed lines and arrows show the calculated evolution of VOC and NOx concentrations in a series of air parcels over an 8 h period (9am – 5pm), each with initial VOC/NOx = 6 and speciation typical of urban centers in the US, based on calculations shown in Milford et al. (1994) Simple model calculations illustrating the varying sensitivity of O_3 photochemical production to VOC and NO_x . In each panel, model-calculated O_3 concentrations are plotted as a function of time of day for a hypothetical air parcel containing an initial, urban-like mixture of anthropogenic VOC and NO_x under summertime conditions with 1 ppb of biogenic isoprene and varying rates of vertical mixing and free tropospheric entrainment. For each mixing rate, simulations for three initial VOC and NO_x concentrations are presented: "Base" with initial VOC and NO_x = 1.5 and 0.25 ppm respectively; "VOC/2" with initial VOC = 0.75 and NO_x = 0.25 ppm; and " $NO_x/2$ " with initial NO_x = 0.125 and VOC = 1.5 ppm. Note the characteristic tendency for the system to evolve from VOC-limitation to NO_x - limitation with time for the point of transition to be delayed as mixing decreases.